Changes

Jump to navigation Jump to search
Line 46: Line 46:  
* Fan: There are usually two fans on the nozzle of a 3D printer, and they serve the purpose of cooling the plastic as soon as it comes out of the nozzle. If the plastic is super hot, we don't want it to move as soon as it is in place on the part we're making, otherwise our part will turn out warped or failed. The fans are put in place to strategically cool the plastic as soon as it comes out of the nozzle. You are able to turn the fan speeds up and down in the slicer software (if that is a provided feature), but you can manually configure it on the printer as well.
 
* Fan: There are usually two fans on the nozzle of a 3D printer, and they serve the purpose of cooling the plastic as soon as it comes out of the nozzle. If the plastic is super hot, we don't want it to move as soon as it is in place on the part we're making, otherwise our part will turn out warped or failed. The fans are put in place to strategically cool the plastic as soon as it comes out of the nozzle. You are able to turn the fan speeds up and down in the slicer software (if that is a provided feature), but you can manually configure it on the printer as well.
 
* Stepper Motor: There are two main places where you'll find stepper motors on a 3D printer. There's a motor for each axes, one for the x, y, and z. These motors receive instructions from the gcode to move the certain axes at certain points to create your print. There is also a stepper motor in the extruder setup, pushing and pulling the filament whenever more or less is needed for the current print.
 
* Stepper Motor: There are two main places where you'll find stepper motors on a 3D printer. There's a motor for each axes, one for the x, y, and z. These motors receive instructions from the gcode to move the certain axes at certain points to create your print. There is also a stepper motor in the extruder setup, pushing and pulling the filament whenever more or less is needed for the current print.
* Infill: Infill has to do with a 3D print's structural integrity. It can be multiple shapes and patterns (providing different strength optimizations), different sizes, and different thicknesses. Infill ranges anywhere from 0% (hollow) to 100% (solid). It is very unlikely you'll ever want a print to be 100% infill, because it takes an insane amount of filament and a lot of time to complete. Most 3D prints are 20% infill since it is the most optimal choice for cost efficiency and durability. If your concern is cost, a lesser infill density is a good way to go. If strength and mass is important, a higher density (between 30%-50%) is a good estimate. When using a higher infill, always double check to make sure it's a good idea for your part, and that you're using the right machine. Other 3D printers in the prototype lab have the option of a stronger filament than PLA or ABS, so it may be a better idea to print for strength on those rather than the Prusas.
+
* Infill: Infill has to do with a 3D print's structural integrity. It can be multiple shapes and patterns (providing different strength optimizations), different sizes, and different thicknesses. Infill ranges anywhere from 0% (hollow) to 100% (solid). It is very unlikely you'll ever want a print to be 100% infill, because it takes an insane amount of filament and a lot of time to complete. Most 3D prints are 15% infill since it is the most optimal choice for cost efficiency and durability. If your concern is cost, a lesser infill density is a good way to go. If strength and mass is important, a higher density (between 30%-50%) is a good estimate. When using a higher infill, always double check to make sure it's a good idea for your part, and that you're using the right machine. Other 3D printers in the prototype lab have the option of a stronger filament than PLA or ABS, so it may be a better idea to print for strength on those rather than the Prusas.
 
* Filament: There are many different kinds of filament you can use on the 3D printer, ranging from PLA, to ABS, TPU to Nylon. The most common of these are PLA and ABS; the Prusas are usually set up with PLA. PLA stands for Polylactic Acid, it is the most common desktop 3D printing filament because it is odorless and very hard to warp on its own, therefore not always a need for a heated bed. ABS stands for Acrylonitrile Butadiene Styrene. It's one of the most commercial versions of plastic available (found in legos, packaging, and more)--it's durable, scratch resistant, and tough. Heated beds are a must with ABS filament because it is so temperature sensitive, so it warps very easily. The Prusas use 1.75 mm filament.
 
* Filament: There are many different kinds of filament you can use on the 3D printer, ranging from PLA, to ABS, TPU to Nylon. The most common of these are PLA and ABS; the Prusas are usually set up with PLA. PLA stands for Polylactic Acid, it is the most common desktop 3D printing filament because it is odorless and very hard to warp on its own, therefore not always a need for a heated bed. ABS stands for Acrylonitrile Butadiene Styrene. It's one of the most commercial versions of plastic available (found in legos, packaging, and more)--it's durable, scratch resistant, and tough. Heated beds are a must with ABS filament because it is so temperature sensitive, so it warps very easily. The Prusas use 1.75 mm filament.
 
* CAD Modeling and Thingiverse: There are two ways you can 3D print models. You can either design your own with a CAD (computer-aided design) software, or you can find something similar to what you want on websites like Thingiverse. Thingiverse has all sorts of community-contributed designs, which you can download the .stl files for, slice, and print the models. As for modeling your own projects, there are multiple softwares you can use such as SolidWorks, AutoCAD, Autodesk Inventor, FreeCAD, and many more.
 
* CAD Modeling and Thingiverse: There are two ways you can 3D print models. You can either design your own with a CAD (computer-aided design) software, or you can find something similar to what you want on websites like Thingiverse. Thingiverse has all sorts of community-contributed designs, which you can download the .stl files for, slice, and print the models. As for modeling your own projects, there are multiple softwares you can use such as SolidWorks, AutoCAD, Autodesk Inventor, FreeCAD, and many more.
Line 68: Line 68:  
#Set the rest of the object setting using the left toolbar.
 
#Set the rest of the object setting using the left toolbar.
 
#* In the Position settings, you can adjust where on the printer bed you would like your print to start. Due to automatic bed leveling, the center of the printer bed is always the best place to put your model. If you are printing multiple parts, then arrange everything from the center outwards. You can click and drag your model around and see the change in the X and Y coordinates, and if you need it to be super precise, you can use the keyboard to change the values in the Position settings.
 
#* In the Position settings, you can adjust where on the printer bed you would like your print to start. Due to automatic bed leveling, the center of the printer bed is always the best place to put your model. If you are printing multiple parts, then arrange everything from the center outwards. You can click and drag your model around and see the change in the X and Y coordinates, and if you need it to be super precise, you can use the keyboard to change the values in the Position settings.
#* Scale is important, it determines how large you want your print to be. If you modeled your print to specific dimensions, PrusaControl will import it with the correct dimensions, and you can skip this section. If it is too large, you can scale the model down to 70%-90% and see how that affects the size, and vice versa, changing the scale to 110%-130% if need be.
+
#* Scale is important, it determines how large you want your print to be. If you modeled your print to specific dimensions, Prusa Slicer will import it with the correct dimensions, and you can skip this section. If it is too large, you can scale the model down to 70%-90% and see how that affects the size, and vice versa, changing the scale to 110%-130% if need be.
 
#Set the correct printer settings.
 
#Set the correct printer settings.
 
#* Below is the settings you'll most likely be working with, such as the material, quality, infill, support, and sizing.[[File:Basic Settings.png|none|thumb]]On the Prusa's, we currently only use PLA, so we'll always be keeping the Material option as Prusa PLA.
 
#* Below is the settings you'll most likely be working with, such as the material, quality, infill, support, and sizing.[[File:Basic Settings.png|none|thumb]]On the Prusa's, we currently only use PLA, so we'll always be keeping the Material option as Prusa PLA.
473

edits

Navigation menu