Changes

Jump to navigation Jump to search
Line 97: Line 97:  
There are 4 BNC jacks are on the bottom row of the oscilloscope’s control panel. Each one corresponds to channels 1, 2, 3, and 4. This is where you will plug in the probes that will measure various voltage signals in your circuit. Let’s discuss the knobs and buttons under the VERTICAL section of the control panel. For CH 1, the POSITION knob will move the signal on the display screen of the oscilloscope up and down the y-axis. This is handy when there is a DC voltage offset applied to the AC signal. The VOLTS/DIVISION knob will stretch or shrink the y-axis so that you can see the waveform’s amplitude properly. If the peaks or troughs of the waveform are hitting the top and/or bottom of the display screen, use the VOLTS/DIVISION knob to shrink the y-axis so that the full waveform can be seen. The CH 1 MENU button allows you to set up the probe properties and measurement displays for channel 1. The MATH MENU button allows you to perform operations between channels such as subtracting CH 2 from CH 1.
 
There are 4 BNC jacks are on the bottom row of the oscilloscope’s control panel. Each one corresponds to channels 1, 2, 3, and 4. This is where you will plug in the probes that will measure various voltage signals in your circuit. Let’s discuss the knobs and buttons under the VERTICAL section of the control panel. For CH 1, the POSITION knob will move the signal on the display screen of the oscilloscope up and down the y-axis. This is handy when there is a DC voltage offset applied to the AC signal. The VOLTS/DIVISION knob will stretch or shrink the y-axis so that you can see the waveform’s amplitude properly. If the peaks or troughs of the waveform are hitting the top and/or bottom of the display screen, use the VOLTS/DIVISION knob to shrink the y-axis so that the full waveform can be seen. The CH 1 MENU button allows you to set up the probe properties and measurement displays for channel 1. The MATH MENU button allows you to perform operations between channels such as subtracting CH 2 from CH 1.
   −
The HORIZONTAL section of the control panel let’s you manipulate the x-axis of the display screen. The POSITION knob acts as time offset. In most cases, this can be set to zero, but you’ll notice that you can shift the waveform left and right by turning this knob. The SECONDS/DIVISION knob will stretch or shrink the x-axis so that you can see the waveform’s frequency/period properly. If you’re ever wondering why your 100kHz sine wave looks like a solid fuzzy block on the display screen, you need to zoom way in with the SECONDS/DIVISION knob to see the individual peaks and troughs. You might do some basic math to know where you need to set the knob (sounds crazy, right???). 100kHz is the frequency… that means the period of the waveform is 10μS. If I set the SECONDS/DIVISION knob to 10μS per division, then I should see roughly 5 peaks and 5 troughs of the waveform on the display screen because there are 5 dashed grid lines (4 plus the y-axis) across the screen that mark the divisions.
+
The HORIZONTAL section of the control panel let’s you manipulate the x-axis of the display screen. The POSITION knob acts as time offset. In most cases, this can be set to zero, but you’ll notice that you can shift the waveform left and right by turning this knob. The SECONDS/DIVISION knob will stretch or shrink the x-axis so that you can see the waveform’s frequency/period properly. If you’re ever wondering why your 100kHz sine wave looks like a solid fuzzy block on the display screen, you need to zoom way in with the SECONDS/DIVISION knob to see the individual peaks and troughs. You might do some basic math to know where you need to set the knob (sounds crazy, right???). 100kHz is the frequency… that means the period of the waveform is 10μS. If I set the SECONDS/DIVISION knob to 10μS per division, then I should see roughly 10 peaks and 10 troughs of the waveform on the display screen because there are 9 vertical dashed grid lines (8 plus the y-axis) across the screen that mark the divisions.
    
The trigger on an oscilloscope is an important part of properly displaying a waveform. The trigger determines when the oscilloscope starts to acquire data. When a trigger is set up properly, the oscilloscope converts unstable displays or blank screens into meaningful waveforms. Of the types of triggers available on this oscilloscope, most waveforms can be captured using the edge mode. In the TRIGGER section on the control panel of the oscilloscope, you’ll see a LEVEL knob. When you turn the LEVEL knob, you should see a little pointer moving up and down the side of the display screen (in the direction of the y-axis). Generally, the trigger level can be set to approximately the middle of the waveform for good results.
 
The trigger on an oscilloscope is an important part of properly displaying a waveform. The trigger determines when the oscilloscope starts to acquire data. When a trigger is set up properly, the oscilloscope converts unstable displays or blank screens into meaningful waveforms. Of the types of triggers available on this oscilloscope, most waveforms can be captured using the edge mode. In the TRIGGER section on the control panel of the oscilloscope, you’ll see a LEVEL knob. When you turn the LEVEL knob, you should see a little pointer moving up and down the side of the display screen (in the direction of the y-axis). Generally, the trigger level can be set to approximately the middle of the waveform for good results.

Navigation menu