Line 81: |
Line 81: |
| <strong>Step 15:</strong> Now the fun part begins because we are moving from 2D to 3D. In the top left corner, click Exit Sketch (your sketch should turn light grey). Click on the Features tab and select the Revolved Boss/Base option. SolidWorks may ask you to select a plane to perform this revolve in; click on the 72mm line as the axis of revolution. Usually SolidWorks will figure out the rest of the revolve, but you may have to select the correct contours to get the desired result. Click the green checkmark in the left column if everything looks good. If the revolve function gives you an error, you may have to go back into your sketch and fix something. | | <strong>Step 15:</strong> Now the fun part begins because we are moving from 2D to 3D. In the top left corner, click Exit Sketch (your sketch should turn light grey). Click on the Features tab and select the Revolved Boss/Base option. SolidWorks may ask you to select a plane to perform this revolve in; click on the 72mm line as the axis of revolution. Usually SolidWorks will figure out the rest of the revolve, but you may have to select the correct contours to get the desired result. Click the green checkmark in the left column if everything looks good. If the revolve function gives you an error, you may have to go back into your sketch and fix something. |
| | | |
− | 32
| + | [[File:Egg 15.png|1500px|none]] |
| <br> | | <br> |
| <br> | | <br> |
| <strong>Step 16:</strong> You should now have a 3D egg similar to the screenshot below. However, this design is not ready for 3D printing. You can click and hold the scroll wheel to rotate the egg, and you'll notice that the 6mm line at the bottom of the egg has now turned into a 12mm diameter circle. We have intentionally made this flat spot a little larger to get better adhesion to the base plate during the print, but it is not sufficient on its own to keep the egg from tipping over in the event that the nozzle crashes into it. Later on, we will add supports to the bottom part of the egg using the Prusa 3D Slicer software that will support the shallow parts of the egg's curvature. But for now, we are going to add structural supports in SolidWorks that will mitigate the risk of the egg tipping over in the middle of the print. | | <strong>Step 16:</strong> You should now have a 3D egg similar to the screenshot below. However, this design is not ready for 3D printing. You can click and hold the scroll wheel to rotate the egg, and you'll notice that the 6mm line at the bottom of the egg has now turned into a 12mm diameter circle. We have intentionally made this flat spot a little larger to get better adhesion to the base plate during the print, but it is not sufficient on its own to keep the egg from tipping over in the event that the nozzle crashes into it. Later on, we will add supports to the bottom part of the egg using the Prusa 3D Slicer software that will support the shallow parts of the egg's curvature. But for now, we are going to add structural supports in SolidWorks that will mitigate the risk of the egg tipping over in the middle of the print. |
| | | |
− | 33
| + | [[File:Egg 16.1.png|1500px|none]] |
− | 34
| + | [[File:Egg 16.2.png|1500px|none]] |
| <br> | | <br> |
| <br> | | <br> |
| <strong>Step 17:</strong> In the design tree, drop down the arrow on the revolve to reveal the nested sketch. Click on the sketch and select the eyeball icon to make it visible. On the Features tab, select Reference Geometry and click on Plane. For the First Reference, you can drop down the design tree in the top left of your workspace and select the Right Plane. Set the offset distance to 24mm and click the green checkmark when you are finished. | | <strong>Step 17:</strong> In the design tree, drop down the arrow on the revolve to reveal the nested sketch. Click on the sketch and select the eyeball icon to make it visible. On the Features tab, select Reference Geometry and click on Plane. For the First Reference, you can drop down the design tree in the top left of your workspace and select the Right Plane. Set the offset distance to 24mm and click the green checkmark when you are finished. |
| | | |
− | 37
| + | [[File:Egg 17.png|1500px|none]] |
| <br> | | <br> |
| <br> | | <br> |
| <strong>Step 18:</strong> In the design tree, right click on the plane and select the sketch icon. Draw a circle on the plane and make its center point coincident with the point on the side of your egg as shown in the screenshot below. To make these two points coincident, hold shift and click on both the center point of the circle and the point on the side of the egg. Then use the Add Relations section to make them coincident. Use the Smart Dimension tool to set the diameter of the circle to 2mm (radius of 1mm). | | <strong>Step 18:</strong> In the design tree, right click on the plane and select the sketch icon. Draw a circle on the plane and make its center point coincident with the point on the side of your egg as shown in the screenshot below. To make these two points coincident, hold shift and click on both the center point of the circle and the point on the side of the egg. Then use the Add Relations section to make them coincident. Use the Smart Dimension tool to set the diameter of the circle to 2mm (radius of 1mm). |
| | | |
− | 38
| + | [[File:Egg 18.png|1500px|none]] |
| <br> | | <br> |
| <br> | | <br> |
| <strong>Step 19:</strong> Exit the sketch and start a new sketch by right clicking the top plane and selecting the sketch icon. Draw a circle on the top plane and use the Smart Dimension tool to set the following parameters. Set the diameter of the circle to 10mm. Set the distance from the origin to the center of the circle as 35mm. Add a horizontal relation between the center of the circle and the origin by holding shift, clicking both points, and selecting the appropriate relation. Double-check to make sure everything is fully defined. | | <strong>Step 19:</strong> Exit the sketch and start a new sketch by right clicking the top plane and selecting the sketch icon. Draw a circle on the top plane and use the Smart Dimension tool to set the following parameters. Set the diameter of the circle to 10mm. Set the distance from the origin to the center of the circle as 35mm. Add a horizontal relation between the center of the circle and the origin by holding shift, clicking both points, and selecting the appropriate relation. Double-check to make sure everything is fully defined. |
| | | |
− | 39
| + | 234234 |
| <br> | | <br> |
| <br> | | <br> |