Changes

Jump to navigation Jump to search
Line 1: Line 1:  
{{#set:
 
{{#set:
  |Is equipment=True
+
|Is equipment=True
  |Has make=BK Precision
+
|Has name={{PAGENAME}}
  |Has make=Teletronix
+
|Has make=BK Precision
  |Has model=1651A DC Power Supply
+
|Has make=Teletronix
  |Has model=4017A Function Generator
+
|Has model=1651A DC Power Supply
  |Has model=TDS 2024 Oscilloscope
+
|Has model=4017A Function Generator
  |Has model=2831 4 1/2 Digital Multimeter
+
|Has model=TDS 2024 Oscilloscope
  |Has name={{PAGENAME}}
+
|Has model=2831 4 1/2 Digital Multimeter
  |Is located in facility=Tool Room
+
|Has serial number=
  |Is located in facility=The Hub
+
|Has life expectancy=
  |Is used in domain=Electronics
+
|Has year of manufacture or purchase=
  |Has function=Measurement
+
|Has replacement cost=
  |Has icon=File:Electronics Workstation.png
+
|Is located in facility=The Hub
  |Has icondesc=Oscilloscope graphic
+
|Is used in domain=Electronics
  |Has image=File:Electronics Workstation.png
+
|Has function=Measurement
  |Has imagedesc=Electronics Workstation
+
|Has icon=File:Electronics Workstation 2.png
  |Has description=Standard electronics measurement and signal generation equipment.
+
|Has icondesc=Oscilloscope graphic
  |Has certification=https://georgefox.instructure.com/courses/1271
+
|Has image=File:Electronics Workstation 2.png
  |Has ace=Needed;Needed
+
|Has imagedesc=Electronics Workstation
 +
|Has description=Standard electronics measurement and signal generation equipment.
 +
|Has certification=https://georgefox.instructure.com/courses/1271
 +
|Has ace=Nick Scianna;nscianna18@georgefox.edu
 
  }}
 
  }}
 
  [[{{#show: {{FULLPAGENAME}}|?Has icon|link=none}}|140px|left|top|{{#show: {{FULLPAGENAME}}|?Has icondesc}}]]
 
  [[{{#show: {{FULLPAGENAME}}|?Has icon|link=none}}|140px|left|top|{{#show: {{FULLPAGENAME}}|?Has icondesc}}]]
Line 37: Line 40:     
==DC Power Supply==
 
==DC Power Supply==
 
+
[[File:DC PS Controls.jpg|400px|thumb|right|DC Power Supply Controls]]
 
The most basic function of a DC power supply is to provide a constant voltage to a device. “DC” stands for direct current; “AC” stands for alternating current. A 9V battery is an example of a DC voltage, and it will hold a constant 9 volts (at least until the battery starts to die). A 120V wall outlet is an example of an AC voltage, and it will fluctuate up and down from 120V to -120V and back to 120V over a set period of time. A DC power supply converts the alternating current from a wall outlet to a steady direct current through a system of transformers and filtering circuitry. We have a couple different models of DC power supplies in the Maker Hub.
 
The most basic function of a DC power supply is to provide a constant voltage to a device. “DC” stands for direct current; “AC” stands for alternating current. A 9V battery is an example of a DC voltage, and it will hold a constant 9 volts (at least until the battery starts to die). A 120V wall outlet is an example of an AC voltage, and it will fluctuate up and down from 120V to -120V and back to 120V over a set period of time. A DC power supply converts the alternating current from a wall outlet to a steady direct current through a system of transformers and filtering circuitry. We have a couple different models of DC power supplies in the Maker Hub.
   Line 62: Line 65:     
==Function Generator==
 
==Function Generator==
 
+
[[File:Waveforms.png|400px|thumb|right|Different Waveform Shapes]]
 
A function generator creates AC periodic waveforms; it allows the user to manipulate an electrical signal’s amplitude, duty cycle, offset, and frequency over a wide range of values. This function generator can produce sine, square, triangle, ramp/sawtooth, and digital pulse waveforms. The manual for this function generator is fairly well-written, so I will only highlight a few excerpts here. I would encourage you to read the manual for complete operating instructions.
 
A function generator creates AC periodic waveforms; it allows the user to manipulate an electrical signal’s amplitude, duty cycle, offset, and frequency over a wide range of values. This function generator can produce sine, square, triangle, ramp/sawtooth, and digital pulse waveforms. The manual for this function generator is fairly well-written, so I will only highlight a few excerpts here. I would encourage you to read the manual for complete operating instructions.
[[File:Waveforms.png|400px|thumb|right|Different Waveform Shapes]]
      
===Controls===
 
===Controls===
 
+
[[File:FG Controls.jpg|400px|thumb|right|Function Generator Controls]]
 
There are eight range switches that select output frequencies from <1Hz to 10MHz. The coarse frequency knob adjusts the frequency within a range from 10%-of-the-maximum to the maximum. For example, if the 100kHz range is selected, the output frequency can be adjusted from 10kHz to 100kHz. The duty cycle, CMOS level, DC offset, and -20dB functions are only active if their corresponding switches are pressed in. The duty cycle knob alters the symmetry of the waveform through skewing or changing the ratio of “on” time versus “off” time. The DC offset changes the mean amplitude of the waveform. Reference the manual for information on more advanced capabilities such as the sweep functions, TTL/CMOS, and voltage-controlled generation.
 
There are eight range switches that select output frequencies from <1Hz to 10MHz. The coarse frequency knob adjusts the frequency within a range from 10%-of-the-maximum to the maximum. For example, if the 100kHz range is selected, the output frequency can be adjusted from 10kHz to 100kHz. The duty cycle, CMOS level, DC offset, and -20dB functions are only active if their corresponding switches are pressed in. The duty cycle knob alters the symmetry of the waveform through skewing or changing the ratio of “on” time versus “off” time. The DC offset changes the mean amplitude of the waveform. Reference the manual for information on more advanced capabilities such as the sweep functions, TTL/CMOS, and voltage-controlled generation.
 
The best way to “see” the output of a function generator is to use an oscilloscope. An oscilloscope will show you a graphical representation of the signal, and allow you to understand the effects of the waveform shape, frequency range switches, coarse/fine adjustment, duty cycle, DC offset, etc.
 
The best way to “see” the output of a function generator is to use an oscilloscope. An oscilloscope will show you a graphical representation of the signal, and allow you to understand the effects of the waveform shape, frequency range switches, coarse/fine adjustment, duty cycle, DC offset, etc.
Line 93: Line 95:  
Seriously though, you won’t learn how to properly set triggers, display signals, or troubleshoot problems if you rely heavily on the AUTOSET button. Though the oscilloscope may look complicated, it’s not hard to understand once you get to know it. For the purposes of this certification, the AUTOSET button is off-limits, so you can save yourself the seven years’ bad luck.
 
Seriously though, you won’t learn how to properly set triggers, display signals, or troubleshoot problems if you rely heavily on the AUTOSET button. Though the oscilloscope may look complicated, it’s not hard to understand once you get to know it. For the purposes of this certification, the AUTOSET button is off-limits, so you can save yourself the seven years’ bad luck.
   −
One of the first things we need to understand about the oscilloscope is what it’s actually showing on the display screen. The display is set up like a standard Cartesian coordinate system. (you know, a graph...){{#evu:https://www.youtube.com/watch?v=sIlNIVXpIns|graph}}
+
One of the first things we need to understand about the oscilloscope is what it’s actually showing on the display screen. The display is set up like a standard Cartesian coordinate system. (you know, a graph...){{#evu:https://www.youtube.com/watch?v=sz2mmM-kN1I|graph}}
 +
[[File:Oscilloscope Controls.jpg|400px|thumb|right|Oscilloscope Controls]]
 
The units of the graph tell us a lot about what we are looking at. The y-axis is voltage, and the x-axis is time. So, an oscilloscope will show—in real time—how a voltage signal is changing over time. One key skill we need to learn when using the oscilloscope is to manipulate the scales of the x-axis and y-axis so that you can see the voltage signal clearly and meaningfully on the oscilloscope’s display.
 
The units of the graph tell us a lot about what we are looking at. The y-axis is voltage, and the x-axis is time. So, an oscilloscope will show—in real time—how a voltage signal is changing over time. One key skill we need to learn when using the oscilloscope is to manipulate the scales of the x-axis and y-axis so that you can see the voltage signal clearly and meaningfully on the oscilloscope’s display.
 
There are 4 BNC jacks are on the bottom row of the oscilloscope’s control panel. Each one corresponds to channels 1, 2, 3, and 4. This is where you will plug in the probes that will measure various voltage signals in your circuit. Let’s discuss the knobs and buttons under the VERTICAL section of the control panel. For CH 1, the POSITION knob will move the signal on the display screen of the oscilloscope up and down the y-axis. This is handy when there is a DC voltage offset applied to the AC signal. The VOLTS/DIVISION knob will stretch or shrink the y-axis so that you can see the waveform’s amplitude properly. If the peaks or troughs of the waveform are hitting the top and/or bottom of the display screen, use the VOLTS/DIVISION knob to shrink the y-axis so that the full waveform can be seen. The CH 1 MENU button allows you to set up the probe properties and measurement displays for channel 1. The MATH MENU button allows you to perform operations between channels such as subtracting CH 2 from CH 1.
 
There are 4 BNC jacks are on the bottom row of the oscilloscope’s control panel. Each one corresponds to channels 1, 2, 3, and 4. This is where you will plug in the probes that will measure various voltage signals in your circuit. Let’s discuss the knobs and buttons under the VERTICAL section of the control panel. For CH 1, the POSITION knob will move the signal on the display screen of the oscilloscope up and down the y-axis. This is handy when there is a DC voltage offset applied to the AC signal. The VOLTS/DIVISION knob will stretch or shrink the y-axis so that you can see the waveform’s amplitude properly. If the peaks or troughs of the waveform are hitting the top and/or bottom of the display screen, use the VOLTS/DIVISION knob to shrink the y-axis so that the full waveform can be seen. The CH 1 MENU button allows you to set up the probe properties and measurement displays for channel 1. The MATH MENU button allows you to perform operations between channels such as subtracting CH 2 from CH 1.
Line 108: Line 111:     
==Digital Multimeter==
 
==Digital Multimeter==
 
+
[[File:DMM Controls.jpg|400px|thumb|right|Digital Multimeter Controls]]
 
A digital multimeter can measure a host of electrical properties including DC voltage and current, AC voltage and current, resistance, continuity, frequency, period, dB, dBm, True RMS AC+DC, and diode testing.
 
A digital multimeter can measure a host of electrical properties including DC voltage and current, AC voltage and current, resistance, continuity, frequency, period, dB, dBm, True RMS AC+DC, and diode testing.
   Line 142: Line 145:     
==Demonstration==
 
==Demonstration==
[[File:E W Circuit Diagram.jpg|400px|thumb|right|Demo Circuit Diagram]]
+
[[File:E W Circuit Pic.jpg|400px|thumb|right]][[File:Resistor-color-chart.png|400px|thumb|right]]
Set up a breadboard with a 10kΩ potentiometer as a voltage divider. Connect an LED's anode (the longer leg) to the wiper of the potentiometer. Connect a 560Ω resistor to the cathode (the shorter leg), and connect the other side of the resistor to ground. See the demo circuit diagram to the right for reference.
+
Set up a breadboard with a 10kΩ potentiometer as a voltage divider. Connect an LED's anode (the longer leg) to the wiper of the potentiometer. Connect a 560Ω resistor to the cathode (the shorter leg), and connect the other side of the resistor to ground. See the demo circuit diagram for reference.
 +
[[File:E W Circuit Diagram.jpg|400px|thumb|none|Demo Circuit Diagram]]
 +
Part 1: Connect a DC power supply to the input and set it to 10V. Slowly adjust the potentiometer to determine how much voltage and current is needed to turn on the LED. Measure the voltage and current using the digital multimeter.
   −
Part 1: Connect a DC power supply to the input and set it to 10V. Slowly adjust the potentiometer to determine how much voltage and current is needed to turn on the LED. Measure the voltage and current using the digital multimeter.
  −
[[File:E W Circuit Pic.jpg|400px|thumb|right]]
   
Part 2: Disconnect the DC power supply from the input and connect the function generator to the input. Connect the oscilloscope probes to both the input and output of the potentiometer to display the waveforms. Set the function generator to a sine wave to turn the LED on and off. Experiment with a DC offset and a square wave.
 
Part 2: Disconnect the DC power supply from the input and connect the function generator to the input. Connect the oscilloscope probes to both the input and output of the potentiometer to display the waveforms. Set the function generator to a sine wave to turn the LED on and off. Experiment with a DC offset and a square wave.
[[File:E W Oscilloscope Screen.jpg|400px|thumb|right|CH 1: Function generator to the input. CH 2: Output of the circuit measured at V2]]
+
[[File:E W Oscilloscope Screen.jpg|400px|thumb|none|CH 1: Function generator signal to the input. CH 2: Output of the circuit measured at V2]]
    
==Documentation==
 
==Documentation==
 
====User Manuals====
 
====User Manuals====
   −
[[Media:1651A DC Power Supply.pdf|1651A DC Power Supply Manual]]
+
[[Media:1651A DC Power Supply.pdf|1651A DC Power Supply User Manual]]
   −
[[Media:4017A Function Generator Manual.pdf|4017A Function Generator Manual]]
+
[[Media:4017A Function Generator Manual.pdf|4017A Function Generator User Manual]]
   −
[[Media:TDS 2024 Oscilloscope.pdf|TDS 2024 Oscilloscope Manual]]
+
[[Media:TDS 2024 Oscilloscope.pdf|TDS 2024 Oscilloscope User Manual]]
   −
[[Media:2831E Digital Multimeter Manual.pdf|2831E Digital Multimeter Manual]]
+
[[Media:2831E Digital Multimeter Manual.pdf|2831E Digital Multimeter User Manual]]
    
==Safety==
 
==Safety==
Line 177: Line 180:  
The electronics workstation is a notorious area in the Maker Hub where messes are left behind. The same RESET THE SPACE principles apply to the electronics workstation as they do everywhere else in the Maker Hub. Clean up after yourself when you finish please.
 
The electronics workstation is a notorious area in the Maker Hub where messes are left behind. The same RESET THE SPACE principles apply to the electronics workstation as they do everywhere else in the Maker Hub. Clean up after yourself when you finish please.
    +
* Please unplug all leads and return them to the rack on the side of the wire cart.
 
* Make sure all benchtop instruments and soldering irons are turned off before leaving.
 
* Make sure all benchtop instruments and soldering irons are turned off before leaving.
 
* Do not leave a pile of snipped leads or stripped wires behind.
 
* Do not leave a pile of snipped leads or stripped wires behind.
Line 186: Line 190:     
==Certification==
 
==Certification==
 +
Complete <strong>The Hub - {{PAGENAME}} Module</strong> at the link below to gain access to the {{PAGENAME}}. The Maker Hub Canvas course pertains to all facilities and equipment contained in the Maker Hub; simply complete the quizzes for the facilities/equipment you wish to use in the Maker Hub. Please email <span style="color:blue">makerhub@georgefox.edu</span> if you have any questions.
   −
[https://georgefox.instructure.com/courses/1271 Canvas Quiz]
+
[https://georgefox.instructure.com/enroll/G7CTPX Maker Hub Canvas Course]

Navigation menu